Project Overview

Microorganisms including viruses, which can be aerosolized, become airborne, be transmitted to other animals, be transported well beyond their area of origin, represent major health and economic risks to producers as well as to human and animal populations. Airborne transmissible diseases such as Porcine Reproductive and Respiratory Syndrome (PRRS) can cause significant economic losses to the Canadian swine industry through actual loss in animal productivity, added costs of medication and eradication measures, and even potential loss of access to markets for Canadian pigs. Losses to the Canadian swine industry due to PRRS alone was estimated to be around $100 million per year. Most recently, the swine industry is faced with the serious threat of another emerging disease, Porcine Epidemic Diarrhea (PED), which has now been found in the Canadian herd. Although PED is not known to be transmitted airborne, contaminated transport trailers were identified as one of the main routes for spreading the PED virus.

The past project under the Canadian AgriSafety Applied Research Program 2014 - 2018 developed a new prototype trailer design that can prevent the dispersion of pathogens and protect the animals from airborne transmissible diseases during transport. The design of the prototype trailer tried to integrate as much as possible the desired features identified by stakeholders to mitigate the risk of airborne infection. The prototype trailer was a first attempt at developing an entirely new platform for animal transport, thus it is not yet perfect and requires further work to get it to a stage that it can be widely adopted and eventually commercialized. In addition, new issues and risks have emerged since the conceptualization of the current project more than 4 years ago; these need to be taken into consideration in the next steps of the development of the new trailer design. Hence, this proposed project is aimed to pursue the development of the new design of animal transport trailers, to help in ultimately getting this new transport platform widely accepted, and to ensure that the past and current effort and investment in building the first prototype are not wasted.  This current project is important to mitigate the serious consequences that can occur if high-value stock becomes infected by airborne transmissible diseases during transport through pig-dense areas where major swine diseases are endemic. 


Aims of Project

The specific aims of this proposed project are to:

  1. Enhance and optimize the current prototype trailer, taking into account the findings from the current Agrivita-funded project and the need for additional design features in response to new and emerging issues such as more stringent biosecurity requirements to combat new diseases and the growing public demand for enhanced animal welfare.
  2. Evaluate the modified prototype in static and road tests, and in PRRSv-challenge tests, while monitoring additional parameters focusing on the biosecurity and animal welfare aspects of the trailer as well as the impact on the overall health and safety of workers and animals.
  3. Conduct analysis of the enhanced trailer design for manufacturability and develop recommendations to facilitate the turn over to trailer manufacturers and pig transport companies for commercial implementation.

For further information about this project, please contact Program Manager Nadia Smith at 306-966-1648 or by email at



Brown, J., T. G. Crowe, S. Torrey, R. Bergerson, T. Widowski, J. Correa, L. Faucitano and H. Gonyou. (2011). Assessing welfare during transport: relationships between truck temperatures, pigs behaviour, blood stress markers and meat quality. 5th International Conference on the Assessment of Animal Welfare at the Farm and Group Level. Guelph, ON. Aug 8-11.

Brown, J. A., T. S. Samarakone, T. Crowe, R. Bergerson, T. Widowski, J. A. Correa, L. Faucitano, S. Torrey and H. W. Gonyou. (2011). Temperature and humidity conditions in trucks transporting pigs in two seasons in eastern and western Canada. Transactions of the ASABE. 54: 2311-2318.

Correa, J. A., H. W. Gonyou, S. Torrey, T. Widowski, R. Bergeron, T. G. Crowe, J. P. Laforest and L. Faucitano. (2013). Welfare and carcass and meat quality of pigs being transported for two hours using two vehicle types during two season of the year. Canadian Journal of Animal Science. 93: 43-55.

Hayne, S., T. Samarakone, T. G. Crowe, S. Torrey, R. Bergeron, T. Widowski, N. Lewis, C. Dewey, L. Faucitano and H. W. Gonyou. (2009). Variation in temperature within trucks transporting pigs during two seasons in two locations. Banff Pork Seminar. Banff, AB. Jan 20-23.

Weschenfelder, A. V., S. Torrey, N. Devillers, T. G. Crowe, A. Bassols, Y. Saco, M. Piñerio, L. Saucier and L. Faucitano. (2013). Effect of trailer design on animal welfare parameters and carcass and meat quality of three Pietrain crosses transported over a short distance. Livestock Science. 157: 234 - 244.

Widowski, T., E. Tamminga, R. Bergeron, J. Correa, T. G. Crowe, C. Dewey, L. Faucitano, H. W. Gonyou, N. Lewis and S. Torrey. (2010). Effects of stage of transport and vehicle design on deep core body temperature of market pigs. Centralia Swine Research Update. Kirkton, ON. Jan 27. Pages I-25 – I-26.


Knowledge Transfer (KT) bulletins and information here will be posted to this section.

Year 1

2019 - 2020 Year 1 Update

Year 2

2020 - 2021 Year 2 Update

Year 3

2021-2022 Year 3 Update

Year 4

2022 - 2023 Year 4 Update

Year 5

2023 - 2024 Year 5 Update